6,034 research outputs found

    Greenhouse technology for sustainable production in mild winter climate areas: Trends and needs

    Get PDF
    Greenhouse production in the near future will need to reduce significantly its environmental impact. For this purpose, elements such as the structure, glazing materials, climate equipments and controls have to be developed and wisely managed to reduce the dependence on fossil fuels, achieve maximum use of natural resources such as solar radiation and water, and minimize the input of chemicals and fertilizers. This paper discusses the most relevant developments in greenhouse technology for mild winter climates. Regarding greenhouse structures, recent studies based on computational fluid dynamics have been conducted to investigate the effect of parameters such as ventilator size and arrangement, roof slope and greenhouse width and height on the air exchange rate. Next generation greenhouses are expected to incorporate some of the innovations derived from recent ventilation studies. Covering crops with screens is becoming a common practice. Main advantages and limitations of screenhouses are discussed in this paper. Thermal storage is increasingly applied in closed or semi-closed greenhouses. Under some conditions semi-closed greenhouses could mitigate day/night while reducing the use of water and the entrance of pest. Photo selective films that reflect a fraction of NIR radiation are effective at lowering greenhouse temperature and, in some cases, may be cost effective. NIR reflective films have side effects of major importance in greenhouse production. The CO2 enrichment strategy in computer-controlled greenhouses is based on determining the benefits of increasing the CO2 concentration against the cost of it. No clear strategies have been defined for the application of CO2 in unheated greenhouses, where most of the time the source of carbon dioxide is the external air. Some authors suggest ventilating as little as possible and fertilizing with bottled carbon dioxide at least up to the external concentration. Improving greenhouses by introducing new technologies may have an additional impact on the environment. From an environmental point of view, the incorporation of technology needs to increase yield to compensate for its associated environmental burden. Previous results have shown that forced ventilation and heating are the main reasons for the increase in environmental impact in climate controlled greenhouses. Additional results on the area of technology and its associated impact are discussed in this pape

    Greenhouse engineering: New technologies and approaches

    Get PDF
    Firstly, this article discusses the greenhouse engineering situation in three geographic areas which are relevant in the field of protected cultivation: Northern Asia, The Netherlands and the Mediterranean. For each area, the prevailing greenhouse type and equipment is briefly described. Secondly, the main technological constraints are pointed out and finally the research directions are discussed. For all areas under consideration, attempts to design more efficient greenhouse systems are under way. In Northern Asia progress is being made towards the optimisation of greenhouses as a solar collector and to the development of new heating strategies. Important subjects addressed in The Netherlands are energy conservation and the replacement or alleviation of human labour by increasing mechanisation. In the Mediterranean there is growing interest in semi-closed greenhouses with CO2 enrichment and control of excessive humidity. All geographic areas share the need of having an optimised climate control based on the crop response to the greenhouse environment. All areas also share the requirement of being respectful to the environment, therefore future greenhouses are expected to use engineering to produce with minimal or zero emissions

    Robust estimation based on one-shot device test data under log-normal lifetimes

    Full text link
    In this paper we present robust estimators for one-shot device test data under lognormal lifetimes. Based on these estimators, confidence intervals and Wald-type tests are also developed. Their robustness feature is illustrated through a simulation study and two numerical examples

    Luxación simultánea de las articulaciones interfalángica y metacarpofalángica del pulgar

    Get PDF
    La luxación volar de la articulación metacarpofalángica del pulgar es una lesión muy rara; sólo 3 casos de luxación simultánea de las articulaciones metacarpofalángica e interfalángica del pulgar han sido publicados. Presentamos un caso de luxación combinada de las dos articulaciones del pulgar en el que se realizó un tratamiento ortopédico, con resultado satisfactorio.Thumb metacarpo-phalangeal joint palmar dislocation are a very rare injuries. Only 3 reports of intherphalangeal and metacarpo-phalangeal joints dislocations in the same thumb have been Publisher. The following is a case report of simultaneous dislocation of the MCP and IF joints in a thumb treated with a closed reduction

    Two step process for volatile fatty acid production from brewery spent grain: Hydrolysis and direct acidogenic fermentation using anaerobic granular sludge

    Get PDF
    Brewery spent grain (BSG) is an industrial waste stream with large potential for biorefining purposes. This work evaluated the production of volatile fatty acids (VFAs) by a two-step process using BSG as renewable feedstock by combining a single direct hydrolysis step (without removing the acid or potential inhibiting compounds) with an acidogenic fermentation step of the carbohydrate rich leachate. For the first step, a thermal diluted acid hydrolysis was carried (20 min at 121 °C), using eighteen different combinations in terms of total solid (TS) of BSG (4, 7 and 10 % w/w) and H2SO4 (0.0, 0.5, 1.0, 1.5, 2.0 and 3.0 % v/v). The 7.0 % TS of BSG and 1.5 % of H2SO4 combination was the most efficient in terms of total carbohydrate recovery (0.44 g of total carbohydrates per gram of TS). For the second step, an acidogenic batch fermentation of the hydrolysate was performed using anaerobic granular sludge at five different pH conditions (uncontrolled pH from an initial pH 7.0, and constant pH controlled at 4.5, 5.0, 6.0 and 8.0). The highest VFAs concentration was obtained at pH 6.0 and reached 16.89 (± 1.33) g COD/L, composed of mainly (99.5–99.8 %) acetate and butyrate
    corecore